Powerful Redox Molecular Sieve Catalysts for the Selective Oxidation of Cyclohexane in Air

Robert Raja, Gopinathan Sankar, and John Meurig Thomas*

The Royal Institution of Great Britain Davy Faraday Research Laboratory 21 Albemarle Street, London, U.K. WIX 4BS

Received September 29, 1999

Apart from its intrinsic importance in the chemistry of C–H activation,^{1–4} the selective oxidation of cyclohexane to yield cyclohexanol and cyclohexanone is the center-piece of the commercial production of Nylon.⁵ We have recently explored framework-substituted aluminum phosphate (AlPO) molecular sieves as catalysts for the aerobic selective oxidation of linear and cyclic alkanes, alkenes, and ketones,^{6–10} and have found that AlPO-36 (pore aperture 6.5 × 7.5 Å) in which a few percent of the Al^{III} ions have been replaced by Co^{III} (or Mn^{III}) is a good catalyst for cyclohexane oxidation, and that Co^{III} (or Mn^{III}) substituted AlPO-18 (pore aperture 3.8 Å) for the regioselective, terminal oxidation of linear alkanes predominantly to yield the corresponding *n*-alkanoic acids.⁷

A key factor⁷ in achieving the highest catalytic performance of a MAIPO sieve is for the transition metal ions (M) to be in a high oxidation state while still remaining an integral part of the AIPO framework. It so happens that the extent to which M ions originally present in the II oxidation state can be raised to their III state is dependent, for a given ion, on the structure of the AIPO in which it is incorporated substitutionally. This fraction of M^{III} ions is evaluated^{7,11} from X-ray absorption spectroscopy. In the MAIPO-18 structure all the Co^{II} ions, but less than 20% of the Co^{II} ions in MAIPO-5 (up to ca. 4 atom % of the Al^{III} which they replace), may be raised to the III state upon calcination

(1) (a) Barton, D. H. R.; Gastinger, M. J.; Motherwell, W. B. J. Chem. Soc., Chem. Commun. **1983**, 731. (b) Ito, T.; Lunsford, J. H. Nature **1985**, 314, 721.

(2) MacFaul, P. A.; Wayner, D. D. M.; Ingold, K. U. Acc. Chem. Res. **1998**, *31*, 159.

(3) Hill, C. L., Ed. Activation and Functionalization of Alkanes; Wiley-Chichester: Chichester, 1989; Chapters 6–8.

(4) Thomas, J. M. Nature 1985, 314, 669.

(5) Parshall, G. W.; Ittel, S. D. *Homogeneous Catalysis: The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes*, 2nd ed.; Wiley-Interscience: New York, 1992.

- (6) Raja, R.; Thomas, J. M. J. Chem. Soc., Chem. Commun. 1998, 1841.
 (7) Thomas, J. M.; Raja, R.; Sankar, G.; Bell, R. G. Nature 1999, 398, 227
- (8) Sankar, G.; Raja, R.; Thomas, J. M. Catal. Lett. 1998, 55, 15.

(9) Raja, R.; Sankar, G.; Thomas, J. M. J. Chem. Soc., Chem. Commun. 1999, 829.

(10) Raja, R.; Thomas, J. M.; Sankar, G. J. Chem. Soc., Chem. Commun. 1999, 525.

(11) (a) Thomas, J. M.; Greaves, G. N. Science 1994, 265, 1675. (b) Barrett,
 P. A.; Sankar, G.; Catlow, C. R. A.; Thomas, J. M. J. Phys. Chem. 1996, 100, 8977.

(12) We observed cyclohexyl hydroperoxide (cHHP) in the reaction mixture when CoAlPO-5 was used as the catalyst, and in the early stages of the reaction (3 h) with MnAlPO-5. FeAlPO-5 was more reactive than CoAlPO-5 and MnAlPO-5, and hence cHHP was not detected in the reaction mixture.

MnAIPO-5, and hence cHHP was not detected in the reaction mixture. (13) Sheldon, R. A.; Wallau, M.; Arends, I. C. W. E.; Schushardt, U. Acc. Chem. Res. **1998**, *31*, 485 and references therein.

(14) To illustrate this point we took an equimolar mixture of *n*-hexane and cyclohexane and subjected it to a catalytic test over MnAIPO-18 (or CoAIPO-18). There was, unsurprisingly, absolutely no conversion of the cyclohexane molecule, as it is too large to access the active, framework tetrahedral sites in the AIPO-18 structure. The conversion of *n*-hexane, however, was as expected quite substantial, there being good selectivity (66%) for terminally functionalized⁷ products. However, when the same reactant mixture was dissolved in acetic acid, the MnAIPO-18 catalyst now gives rise to considerable oxidation of both cyclohexane (conversion = 8.7%) and *n*-hexane (conversion = 5.2%), Clearly acetic acid as a solvent results in homogeneous as well as heterogeneous catalysis.

Figure 1. (a) Fe K-edge XANES of calcined FeAIPO-5 (tetraethylammonium hydroxide was used as the templating agent). Note that the edge position and in particular the pre-edge feature is similar to that of framework-substituted FeZSM-5 catalyst {in part b}. Fourier transforms {in part c} of the Fe K-edge EXAFS of calcined FeAIPO-5. The solid line is the experimental and dashed curve the computed data generated using EXCURV98. Structural data for the oxygen shell yields an average Fe–O distance of 1.86 ± 0.02 Å, which is similar to that of FePO₄¹⁵ and Fe^{III} containing ZSM-5¹⁶ wherein the Fe^{III} is present in tetrahedral coordination.

Figure 2. Comparison of the fraction of M(III) ions present (estimated from EXAFS) in the calcined FeAIPO-5, MnAIPO-5, and CoAIPO-5 and their catalytic activity (TON) for the oxidation of cyclohexane after 24 h at 403 K. Individual product distributions are also shown.

in O_2 or air at ca. 550 °C. However, the pore dimension of the MAIPO-18 is too small to permit ingress of cyclohexane to the

Table 1. Oxidation of Cyclohexane^a in Dry Air (1.5 MPa)

	time.		conv, mol	product distribution, mol %						
catalyst	h	TON	%	cHHP ^b	-ol	-one	aa	vald	vacid	others
FeAlPO-5	8	45	2.5		41.1	17.9	26.2	13.5	-	1.9
	24	113	6.6		36.2	15.5	31.0	9.2	5.4	2.7
FeAlPO-5 ^e	8	205	11.7		30.5	28.9	28.0	6.3	1.7	4.8
	24	346	19.8		21.7	32.5	32.3	5.0	3.4	5.4
FeAlPO-5 ^d	8	7	0.4	23.1	77.0					
	24	16	0.9		100					
MnAlPO-5	8	47	2.7		36.9	56.0	5.9			1.2^{c}
	24	107	6.2		18.5	42.8	31.5			7.9^{c}
MnAlPO-5 ^e	8	170	9.6		26.7	59.8	9.0			4.6 ^c
	24	292	16.5		19.5	43.1	29.3			8.4^{c}
MnAlPO-5 ^d	24			no reaction						
CoAlPO-5	8	29	1.6	44.1	35.0	21.7				
	24	36	2.0	13.5	15.0	67.8				3.4
$CoAlPO-5^{e}$	8	106	5.8	14.2	36.5	41.2	4.4			3.5
	24	221	12.2	-	31.9	55.7	8.5			4.3
$\mathrm{CoAlPO-5}^d$	24				no re	eactio	n			

^{*a*} Cyclohexane \cong 50 g, mesitylene (internal standard) \cong 2.5 g; catalyst = 0.5 g; pressure (air) = 1.5 MPa; temperature = 403 K. ^{*b*} cHHP = cyclohexyl hydroperoxide; -ol = cyclohexanol; -one = cyclohexanone; aa = adipic acid; vald= valeraldehyde; vacid = valeric acid; others = probably CO₂, CO, water, and traces of lower olefins in the gas phase. ^{*c*} Mainly glutaric + traces of succinic acid. ^{*d*} Reactions carried out in the presence of air and small amounts (3 wt % of cyclohexane) of hydroquinone (free-radical scavenger). ^{*e*} Reactions carried out using air and a free-radical initiator, TBHP (3 wt % of cyclohexane). ^{*f*}TON = moles of substrate converted per mole of metal (Co, Mn, or Fe) in the catalyst.

active sites of this catalyst.⁸ In the calcined MAIPO-5 catalysts, where the diameter (7.3 Å) of the pores is much larger than in MAIPO-18, all the iron ions are present in the III state (Figure 1), and for manganese- and cobalt-containing catalysts ca. 60 and 20% respectively may be raised to their corresponding III states. MAIPO-5 catalysts are readily crystallized from their precursor gels and are also thermally robust.

We find that FeAIPO-5 is an exceptionally good catalyst (Table 1 and Figure 2) for the selective oxidation of cyclohexane in air. In line with earlier observations,^{7,9} the oxidation of cyclohexane proceeds by a free-radical mechanism. This is evidenced by (i)

(15) Cheetham, A. K.; Battle, P. D. *Inorg. Chem.* **1983**, *22*, 3012.
(16) Lewis, D. W.; Sankar, G.; Catlow, C. R. A.; Thomas, J. M.; Carr, S.

Figure 3. Comparative kinetic plots for the oxidation of cyclohexane using CoAlPO-5 (A), MnAlPO-5 (B), FeAlPO-5 (C), FeAlPO-5 in the presence of a free radical initiator {*tert*-butyl hydroperoxide} (D), and FeAlPO-5 in the presence of a free radical scavenger {hydroquinone} (E).

the fact that the addition of a free-radical initiator (TBHP) greatly increases both the rate and degree of conversion of cyclohexane while still retaining a high preference for the three desired products (cyclohexanol, cyclohexanone, and adipic acid), (ii) the fact that the addition of a free-radical scavenger (hydroquinone) essentially stops the reaction and profoundly affects the product distribution (see Figure 3), and (iii) the presence of cyclohexyl hydroperoxide (cHHP)¹² during the initial stages of the reaction, which subsequently decomposes to cyclohexanol and cyclohexanone.

We have found that the widely held¹³ view that MAIPO sieves ($M \equiv Mg$, Zn, Co, Mn, etc.) are unpromising as catalysts because of the propensity for the M ions to leach out of the structure during use is exaggerated. If aggressive solvents such as acetic acid are avoided, MAIPO sieves exhibit good, sustained catalytic performance.¹⁴

Acknowledgment. We thank the EPSRC (UK) for a rolling grant to J.M.T. and The Royal Commission for the Exhibition of 1851 for a research fellowship to R.R. We dedicate this to Dr. K. U. Ingold on the occasion of his 70th birthday.

JA9935052

W. Nucl. Instrum. Methods B **1995**, 97, 44.